
Markov chains

By properties of joint and conditional pdfs:

p(xn) =

∫

p(xn, xn−1) dxn−1 =

∫

p(xn|xn−1)p(xn−1) dxn−1 = Ln[p(xn−1)]

Evolution of probabilities governed by operator L (which will be

independent of time for a stationary process)

If space of xn is finite integers, L is a matrix L and

pn = Lpn−1 = Lnp0

[where pn = (p(xn = 1), p(xn = 2), ..., p(xn = K))]

For processes which conserve probability (e.g.
∑

i Lij = 1) the

maximum eigenvalue of L is 1 with eigenvector ps (the stationary

pdf). As n → ∞, pn approaches ps
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Markov chains: An example

Transition probabilities between

“preferred regimes”

from

PNA BNAO RNA

PNA 0.30 0.34 0.37

to BNAO 0.49 0.26 0.25

RNA 0.36 0.30 0.34

(from Kondrashov et al., Clim Dyn.,

2007.
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Chapman-Kolmogorov equation

Again, by properties of joint and conditional pdfs:

p(xn|xn−2) =

∫

p(xn|xn−1)p(xn−1|xn−2) dxn−1

⇒ an equation for the evolution of the “transfer matrix” p(xi|xj); as a

nonlinear integral equation it’s a bit tricky to solve

Now focus on “smooth” processes with continuous paths and with finite

mean a(x, t) (the drift) and “variance” b(x, t) (the diffusion) of the local

tendency such that for (for all ε > 0)

lim
δ→0

∫

|x(t+δ)−x(t)|<ε

(

x(t + δ) − x(t)

δ

)

p(x(t + δ)|x(t)) dx = a(x, t) + O(ε)

lim
δ→0

∫

|x(t+δ)−x(t)|<ε

(

[x(t + δ) − x(t)]2

δ

)

p(x(t + δ)|x(t)) dx = b2(x, t) + O(ε)

An Introduction to Probability and Stochastic Processes for Ocean, Atmosphere, and Climate Dynamics2: Stochastic Processes – p. 15/64

Chapman-Kolmogorov equation

For such a process the Chapman-Kolmogorov equation can be

transformed into the PDE (with p = p(x(t)|x(t′)))

∂tp = −∂x[a(x, t)p] +
1

2
∂2

xx[b2(x, t)p]

= −∂x

[(

a − 1

2
b∂xb

)

p

]

+
1

2
∂x[b∂x(bp)]

for the pdf at time t conditioned on the state of the system at time t′

This equation, known as the Fokker-Planck Equation (FPE),

describes probability diffusing conservatively through state space

from the original distribution

If a, b independent of time pdf will approach stationary pdf ps:

0 = −∂x[a(x)ps(x)] +
1

2
∂2

xx[b2(x)ps(x)]
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The Wiener process W (t)

Consider the case a(W, t) = 0 (no mean tendency) and b(W, t) = 1:

∂tp =
1

2
∂wwp

This is a classical diffusion equation; with initial condition

p(W (t0)) = δ(W − W0) the solution is

p(W (t)) =
1

√

2π(t − t0)
exp

(

−(W − W0)
2

2(t − t0)

)

Gaussian with mean(W ) = 0 and std(W ) =
√

t − t0 (sound

familiar?)

The Wiener process (or Brownian motion) is continuous

generalisation of random walk; as std(W ) is time-dependent, this is a

non-stationary process
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The Wiener process W (t): curious features

1. Paths W (t) are continuous everywhere but differentiable nowhere

std

(

W (t + δ) − W (t)

δ

)

=

√
δ

δ
→ ∞ as δ → 0

2. Increments ∆tt′W = W (t) − W (t′) are Gaussian, stationary

p(∆tt′W ) =
1

√

2π(t − t′)2
exp

(

−(∆tt′W )2

2(t − t′)

)

and independent

p(∆t3t2W, ∆t2t1W ) =
exp

(

− (∆t3t2
W )2

2(t3−t2)

)

√

2π(t3 − t2)

exp
(

− (∆t2t1
W )2

2(t2−t1)

)

√

2π(t2 − t1)

→ in particular, cov(∆t3t2W, ∆t2t1W ) = 0
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White noise

W (t) not strictly differentiable, but can formally define white noise

Ẇ (t) = lim
δ→0

W (t + δ) − W (t)

δ

such that std(Ẇ (t)) = ∞ and

cov(Ẇ (t), Ẇ (t′)) = lim
δ,δ′→0

E

{(

W (t + δ) − W (t)

δ

) (

W (t′ + δ′) − W (t′)

δ′

)}

= δ(t − t′)

(because if t 6= t′ sufficiently small increments don’t overlap)

White noise infinitely fast, infinitely strong with

E

{

Ẇ (t)Ẇ (t′)
}

= δ(t − t′)

(note: mathematicians usually write dW (t′) = Ẇ (t′)dt)
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An aside: units of white noise

What are the units of white noise? We have:

E

{

Ẇ (t)Ẇ (t′)
}

= δ(t − t′)

so [W ] ∼ [δ]1/2

What are the units of a delta function? We have
∫

δ(t − t′) dt = 1 (dimensionless)

so [δ] ∼ [t]−1

We conclude: Ẇ (t) has the dimensions of one over the square root

of time; has important implications for estimating the coefficient of

white noise in stochastic differential equations
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Ornstein-Uhlenbeck process (red noise)

Consider FPE with a(x, t) = −1/τ and b2(x, t) = γ2 (both constant)

and initial condition p(x(t0)) = δ(x − x0); known as an

Ornstein-Uhlenbeck (O-U) process, or red noise

Can show that solution is Gaussian with

mean(x(t)) = x0e
−t/τ

var(x(t)) =
γ2τ

2

(

1 − e−2t/τ
)

As initial transients die out (t → ∞) p(x) approaches stationary pdf

with mean zero and stationary autocovariance

cov(x(t), x(t′)) =
γ2τ

2
exp(−|t − t′|/τ)

⇒ τ is the “memory” of the system
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Red and white noise

With γ = σ/τ ,

cov(x(t), x(t′)) = σ2

(

1

2τ
exp(−|t − t′|/τ)

)

→ σ2δ(t−t′) as τ → 0

In this limit, red noise becomes white noise scaled by factor σ

Power spectra are Fourier transforms of autocovariances:

SW (ω) = E{W (ω)2} =
1

2π

Sx(ω) = E{x(ω)2} =
γ2τ2

2π(1 + ω2τ2)
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SDEs: A first example

If we can (formally) differentiate W (t) to get Ẇ (t), can (formally)

integrate Ẇ (t) to get W (t) back

Consider forced linear differential equation with x(0) = x0:

d

dt
x = −1

τ
x + γ Ẇ

This stochastic differential equation (SDE) has solution

x(t) = e−t/τx0 + γ

∫ t

0
e−(t−t′)/τẆ (t′) dt′

x(t) is a Gaussian stochastic process with same mean and

autocovariance as O-U process: in fact, this is a pathwise description

of red noise as a weighted integral of white noise
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SDEs: A first example
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